Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37444854

RESUMO

The article presents the findings of a study on the machining of 10 mm thick Hardox 400 steel plates using the CO2 laser. The purpose of the investigation was to investigate the relationship between the entropy and the hardness of machined surfaces. For this purpose, a new mathematical model is established to estimate the entropy, and its influence on the hardness is determined. The mathematical model is statistically and experimentally validated. An entropy variation ΔS = -330 mJ/K between 2 K is found, causing a decrease in hardness compared to the standard value. The influences of input parameters (laser power, cutting speed, and auxiliary gas pressure) on hardness are determined. It is demonstrated that the surface hardness is strongly influenced by the auxiliary gas pressure. The combination of laser power P = 4200 W with gas pressure p = 0.45 bar at average cutting speed v = 1400 mm/min leads to a hardness of 38 HRC, extending the life and wear resistance of the cut parts.

2.
Materials (Basel) ; 15(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36295260

RESUMO

Laser cutting has experienced a sharp development in recent years due to the advantages it implies in industrial production, the most important being: great diversity of processed materials, reduced cutting time, low processing cost, small percentage of removed material, and low impact on the natural environment. The problem of energy has become acute in the last year, so a new direction of research has taken shape, consisting of the optimization of the high energy consumptions involved in laser cutting. The objective of this research is to develop a computational and experimental model to estimate the melting efficiency. Additionally, the research seeks to establish some mathematical relationships that describe the law of variation of the melting efficiency depending on the input parameters in the CO2 laser cutting. The experimental determinations were carried out on Hardox 400 steel plates of 8 mm thickness. The input parameters were laser power, assist gas pressure, and cutting speed. The experimental data were statistically processed, and the results were verified with the Lagrange interpolation method. It was found that the maximum melting efficiency is influenced mainly by laser power (F = 3.06; p = 0.049), followed by speed and pressure. The results obtained show that the melting efficiency varies in the range (13.6-20.68) mm3/KJ. The maximum value of the melting efficiency (20 J/mm3) was obtained when the laser power was 5100 W, the cutting speed 1900 mm/min, and the gas pressure 0.5 bar, and the minimum efficiency under conditions of speed setting at 1700 mm/min and laser power of 5000 W. Linear and quadratic regression models were established to estimate the global mean efficiency according to two independent variables that act at the same time. The established calculation relationships contribute to the improvement of the literature and constitute a tool for practical applications. The results obtained allow the modeling of cutting parameters and the optimization of production costs in industrial processes that use laser cutting.

3.
Materials (Basel) ; 15(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35806629

RESUMO

The use of laser technology for materials processing has a wide applicability in various industrial fields, due to its proven advantages, such as processing time, economic efficiency and reduced impact on the natural environment. The expansion of laser technology has been possible due to the dynamics of research in the field. One of the directions of research is to establish the appropriate cutting parameters. The evolution of research in this direction can be deepened by determining the efficiency of laser cutting. Starting from such a hypothesis, the study contains an analysis of laser cutting parameters (speed, power and pressure) to determine the linear energy and cutting efficiency. For this purpose, the linear energy and the cutting efficiency were determined analytically, and the results obtained were tested with the Lagrange interpolation method, the statistical mathematical method and the graphical method. The material chosen was Hardox 400 steel with a thickness of 8 mm, due to its numerous industrial applications and the fact that it is an insufficiently studied material. Statistical data processing shows that the maximum cutting efficiency is mainly influenced by speed, followed by laser power. The results obtained reduce energy costs in manufacturing processes that use the CO2 laser. The combinations identified between laser speed and power lead to a reduction in energy consumption and thus to an increase in processing efficiency. Through the calculation relationships established for linear energy and cutting efficiency, the study contributes to the extension of the theoretical and practical basis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...